Project Euler – Problem 65 Solution

Yan Cui

I help clients go faster for less using serverless technologies.

Problem

The square root of 2 can be written as an infinite continued fraction.

image7

The infinite continued fraction can be written, ?2 = [1;(2)], (2) indicates that 2 repeats ad infinitum. In a similar way, ?23 = [4;(1,3,1,8)].

It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for ?2.

image11

Hence the sequence of the first ten convergents for ?2 are:

1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, …

What is most surprising is that the important mathematical constant,

e = [2; 1,2,1, 1,4,1, 1,6,1 , … , 1,2k,1, …].

The first ten terms in the sequence of convergents for e are:

2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, …

The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.

Solution

If you look at the convergents of ?2 and the numerators in the convergents of e, you’ll see a pattern emerging:

1    +    2    *   1    =    3

2    +    3    *   2    =    8

3    +    8    *   1    =    11

8    +   11   *   1    =    19

11  +   19   *   4    =    87

If you look at the sequence of numerators in the convergents of e ( 2, 3, 8, 11, … ) and the sequence of numbers in the convergents of ?2 ( 1, 2, 1, 1, 4, 1, … ), given the current numerator ( n ) and the previous numerator ( n-1 ) in the sequence and the corresponding number in the convergents of ?2 ( i )the next numerator ( n+1 ) can be calculated using the formula:

( n+1) = ( n-1 ) + n * i

Once we have this formula to work with, the rest is simple, the solution runs in 7 milliseconds on my machine.


 

Whenever you’re ready, here are 4 ways I can help you:

  1. If you want a one-stop shop to help you quickly level up your serverless skills, you should check out my Production-Ready Serverless workshop. Over 20 AWS Heroes & Community Builders have passed through this workshop, plus 1000+ students from the likes of AWS, LEGO, Booking, HBO and Siemens.
  2. If you want to learn how to test serverless applications without all the pain and hassle, you should check out my latest course, Testing Serverless Architectures.
  3. If you’re a manager or founder and want to help your team move faster and build better software, then check out my consulting services.
  4. If you just want to hang out, talk serverless, or ask for help, then you should join my FREE Community.

 


Leave a Comment

Your email address will not be published. Required fields are marked *