Type.IsSubclssOf and Type.IsAssignableFrom

You can become a serverless blackbelt. Enrol to my 4-week online workshop Production-Ready Serverless and gain hands-on experience building something from scratch using serverless technologies. At the end of the workshop, you should have a broader view of the challenges you will face as your serverless architecture matures and expands. You should also have a firm grasp on when serverless is a good fit for your system as well as common pitfalls you need to avoid. Sign up now and get 15% discount with the code yanprs15!

On the Type class there are two very useful methods which allows you to determine the inheritance relationship of two arbitrary types at runtime – IsSubclassOf method and IsAssignableFrom method.


The MSDN documentation for the IsSubclassOf method states:

Determines whether the class represented by the current Type derives from the class represented by the specified Type.

   1: public class ClassA { }

   2: public class ClassB : ClassA { }

   3: public class ClassC : ClassB { }

   4: ...

   5: Console.WriteLine(typeof(ClassB).IsSubclassOf(typeof(ClassA))); // TRUE

   6: Console.WriteLine(typeof(ClassB).IsSubclassOf(typeof(ClassB))); // FALSE

   7: Console.WriteLine(typeof(ClassB).IsSubclassOf(typeof(ClassC))); // FALSE

   8: Console.WriteLine(typeof(ClassC).IsSubclassOf(typeof(ClassA))); // TRUE

   9: Console.WriteLine(typeof(ClassC).IsSubclassOf(typeof(ClassB))); // TRUE

Pretty useful, eh? However, it doesn’t work when it comes to interfaces:

The IsSubclassOf method cannot be used to determine whether an interface derives from another interface, or whether a class implements an interface.

   1: public interface ID { }

   2: public interface IE : ID { }


   4: public class ClassD : ID { }


   6: Console.WriteLine(typeof(ClassD).IsSubclassOf(typeof(ID))); // FALSE

   7: Console.WriteLine(typeof(IE).IsSubclassOf(typeof(ID));      // FALSE

Ok, roger that, but what about generics? Let’s see..

   1: public class ClassF<T> { }

   2: public class ClassG<T> : ClassF<T> { }

   3: public class ClassH : ClassF<int> { }


   5: // no type constraint, no good

   6: Console.WriteLine(typeof(ClassG<>).IsSubclassOf(typeof(ClassF<>)));             // FALSE


   8: // no covariance support here

   9: Console.WriteLine(typeof(string).IsSubclassOf(typeof(object)));                 // TRUE

  10: Console.WriteLine(typeof(ClassG<string>).IsSubclassOf(typeof(ClassF<object>))); // FALSE


  12: // type constraint has to match

  13: Console.WriteLine(typeof(ClassG<int>).IsSubclassOf(typeof(ClassF<int>)));       // TRUE

  14: Console.WriteLine(typeof(ClassH).IsSubclassOf(typeof(ClassF<int>)));            // TRUE

  15: Console.WriteLine(typeof(ClassH).IsSubclassOf(typeof(ClassF<long>)));           // FALSE


The MSDN documentation for the IsAssignableFrom method states:

Determines whether an instance of the current Type can be assigned from an instance of the specified Type.

The IsAssignableFrom method basically works the same way as the is operator and does a simple assignment compatibility test to see if a variable of type A can be assigned with a variable of type B. Unlike the IsSubclassOf method, it also works for interfaces and remember, if typeof(B).IsSubclassOf(typeof(A)) is true then typeof(A).IsAssignableFrom(typeof(B)) is also true.

   1: Console.WriteLine(typeof(IA).IsAssignableFrom(typeof(IB)));            // TRUE

   2: Console.WriteLine(typeof(IA).IsAssignableFrom(typeof(IA)));            // TRUE

   3: Console.WriteLine(typeof(IB).IsAssignableFrom(typeof(IA)));            // FALSE

   4: Console.WriteLine(typeof(IA).IsAssignableFrom(typeof(ClassA)));        // TRUE

   5: Console.WriteLine(typeof(ClassA).IsAssignableFrom(typeof(ClassB)));    // TRUE

Again, let’s consider the generics case:

   1: // no type constraint, still no good

   2: Console.WriteLine(typeof(ClassF<>).IsAssignableFrom(typeof(ClassG<>)));    // FALSE


   4: // note: whilst you can't specify generic variance on the class definition you can do it on the 

   5: // interface, e.g. IEnumerable<out T>, so we're able to do the following test

   6: Console.WriteLine(typeof(object).IsAssignableFrom(typeof(string)));        // TRUE

   7: Console.WriteLine(typeof(IEnumerable<object>).IsAssignableFrom(typeof(IEnumerable<string>))); // TRUE

Performance Overheads

In general, doing reflection is an expensive business and you should always be mindful of the potential performance hit you get if you have to do lots of reflection in your code.

I can’t think of too many places where you’d need to repeatedly test if one type is subclass of/can be assigned from another type but nonetheless, out of pure curiosity, I decided to give it a test and see what sort of performance overhead these two methods carry and here are the results:

Test: execute 100000 times

Method call Return value Avg time taken (milliseconds) over 3 tries
typeof(ClassB).IsSubclassOf(ClassA) TRUE 6
typeof(ClassB).IsSubclassOf(typeof(ClassH)) FALSE 16
typeof(ClassA).IsSubclassOf(typeof(IA)) FALSE 11
typeof(IA).IsAssignableFrom(typeof(IB)) TRUE 6
typeof(ClassB).IsAssignableFrom(typeof(ClassH)) FALSE 6
typeof(IA).IsAssignableFrom(typeof(ClassH)) FALSE 6

Notice that with the IsSubclassOf method there’s noticeable difference in average run time between cases that returns true and those that return false. Whilst the IsAssignableFrom method consistently runs at 6 milliseconds.

However, given the small amount of time taken to execute each check 100000 times the morale of this story is really “Don’t lose any sleep over it”!

Liked this article? Support me on Patreon and get direct help from me via a private Slack channel or 1-2-1 mentoring.
Subscribe to my newsletter

Hi, I’m Yan. I’m an AWS Serverless Hero and I help companies go faster for less by adopting serverless technologies successfully.

Are you struggling with serverless or need guidance on best practices? Do you want someone to review your architecture and help you avoid costly mistakes down the line? Whatever the case, I’m here to help.

Hire me.

Skill up your serverless game with this hands-on workshop.

My 4-week Production-Ready Serverless online workshop is back!

This course takes you through building a production-ready serverless web application from testing, deployment, security, all the way through to observability. The motivation for this course is to give you hands-on experience building something with serverless technologies while giving you a broader view of the challenges you will face as the architecture matures and expands.

We will start at the basics and give you a firm introduction to Lambda and all the relevant concepts and service features (including the latest announcements in 2020). And then gradually ramping up and cover a wide array of topics such as API security, testing strategies, CI/CD, secret management, and operational best practices for monitoring and troubleshooting.

If you enrol now you can also get 15% OFF with the promo code “yanprs15”.

Enrol now and SAVE 15%.

Check out my new podcast Real-World Serverless where I talk with engineers who are building amazing things with serverless technologies and discuss the real-world use cases and challenges they face. If you’re interested in what people are actually doing with serverless and what it’s really like to be working with serverless day-to-day, then this is the podcast for you.

Check out my new course, Learn you some Lambda best practice for great good! In this course, you will learn best practices for working with AWS Lambda in terms of performance, cost, security, scalability, resilience and observability. We will also cover latest features from re:Invent 2019 such as Provisioned Concurrency and Lambda Destinations. Enrol now and start learning!

Check out my video course, Complete Guide to AWS Step Functions. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. There is something for everyone from beginners to more advanced users looking for design patterns and best practices. Enrol now and start learning!