Advent of Code F# – Day 13

The source code for this post (both Part 1 and Part 2) is available here and you can click here to see my solutions for the other Advent of Code challenges.

Description for today’s challenge is here.

 

The input for Day 13 looks like the following:

Alice would lose 2 happiness units by sitting next to Bob.

Alice would lose 62 happiness units by sitting next to Carol.

Alice would gain 65 happiness units by sitting next to David.

Bob would gain 93 happiness units by sitting next to Alice.

Bob would gain 19 happiness units by sitting next to Carol.

Bob would gain 5 happiness units by sitting next to David.

So first, let’s parse the important information out of each line:

  • who (x)
  • sitting next to whom (y)
  • how much does the happiness change as result

day13_01

we can then build up a Map of this information.

For convenience sake, let’s also create a type alias for this Map, and let’s call it a Graph.

day13_02v2

You might have noticed that, where x is found in the graph, we’re using Add to update both the inner and outer Map. This might seem odd/suspicious, but whilst it’s not mentioned in the documentation the behaviour of Add is actually ‘add or update’ – try this in the F# REPL to see for yourself:

> let m = Map.ofList [ 1, “1”];;

val m : Map<int,string> = map [(1, “1”)]

> m.Add(1, “2”);;

val it : Map<int,string> = map [(1, “2”)]

Once we have parsed the input into a ‘graph’, let’s find all possible sitting arrangements:

day13_03

For each arrangement, we’ll need to score it based on the total happiness of the people in this arrangement:

day13_04

The tricky thing here is to deal with mismatch between the actual sitting arrangement – where everyone sits in a circle – to our representation of it as an array. Which is why I created leftOf and rightOf functions to deal with cases when the index has under/overflown.

Finally, just score every arrangements and find the highest score:

day13_05

 

Part 2

After considering a few approaches, I decided it’ll be easiest to just modify the input so that all the downstream code we wrote for Part 1 would still work just fine.

So, we first need to know who are all the people that will be sitting at the table:

day13_06

so we can inject additional lines (bi-directionally) into the input:

day13_07

Liked this article? Support me on Patreon and get direct help from me via a private Slack channel or 1-2-1 mentoring.
Subscribe to my newsletter


Hi, I’m Yan. I’m an AWS Serverless Hero and the author of Production-Ready Serverless.

I specialise in rapidly transitioning teams to serverless and building production-ready services on AWS.

Are you struggling with serverless or need guidance on best practices? Do you want someone to review your architecture and help you avoid costly mistakes down the line? Whatever the case, I’m here to help.

Hire me.


Check out my new course, Complete Guide to AWS Step Functions. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. Including basic concepts, HTTP and event triggers, activities, callbacks, nested workflows, design patterns and best practices.

Get Your Copy