The C# Dispose Pattern

The Dispose pattern is something we’ve all seen before, and it’s so tried and tested most of us (especially myself!) have been more than happy to apply without question.

Whilst reading various blogs/articles I came across some differing opinion about this well known pattern and started to question what I had taken for granted myself.

After some more research and a question on the goldmine of knowledge that is the StackOverflow I have shortlisted a few points you should consider when implementing the standard C# dispose pattern:

  1. if your object doesn’t hold any IDisposable objects or unmanaged resources (DB connection, for example) then you don’t need to implement the IDisposable or finalizer at all
  2. if your object doesn’t hold any unmanaged resources then don’t implement a finalizer, the Garbage Collector won’t attempt to finalize your object (which has a performance hit) unless you have implemented a finalizer.
  3. don’t forget to call Dispose() on each of the IDisposable objects in the Dispose(bool) method.
  4. if your object holds unmanaged resources, clean them up in the finalizer without re-writing any of the cleanup code in the Dispose(bool) method already.

So for a simple class with no unmanaged resources and a collection of IDisposable objects, your class might look something like this:

public sealed class MyClass : IDisposable
{
     IList<MyObject> objects;  // MyClass holds a list of objects
     private bool _disposed;   // boolean flag to stop us calling Dispose(twice)

     public void Dispose()
     {
          Dispose(true);
          GC.SuppressFinalize(this);
     }

     private void Dispose(bool disposing)
     {
          if (!_disposed)
          {
               // call Dispose on each item in the list
               if (disposing)
               {
                    foreach (var o in objects)
                    {
                         // check if MyObject implements IDisposable
                         var d = o as IDisposable();
                         if (d != null) d.Dispose();
                    }
               }
          _disposed = true;
          }
     }
}

This is fairly similar to the standard C# Dispose pattern, the main difference being the lack of a finalizer because remember, implementing a finalizer will impact the performance of your type so don’t implement it unless you need it.

Liked this article? Support me on Patreon and get direct help from me via a private Slack channel or 1-2-1 mentoring.
Subscribe to my newsletter


Hi, I’m Yan. I’m an AWS Serverless Hero and the author of Production-Ready Serverless.

I specialise in rapidly transitioning teams to serverless and building production-ready services on AWS.

Are you struggling with serverless or need guidance on best practices? Do you want someone to review your architecture and help you avoid costly mistakes down the line? Whatever the case, I’m here to help.

Hire me.


Check out my new course, Complete Guide to AWS Step Functions. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. Including basic concepts, HTTP and event triggers, activities, callbacks, nested workflows, design patterns and best practices.

Get Your Copy