**You can become a serverless blackbelt**. Enrol in my course **Learn you some** **Lambda best practice for great good!** and learn best practices for performance, cost, security, resilience, observability and scalability. By the end of this course, you should be able to make informed decisions on which AWS service to use with Lambda and how to build highly scalable, resilient and cost efficient serverless applications.

#### Problem

Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits:

1634 = 1^{4}+ 6^{4}+ 3^{4}+ 4^{4}

8208 = 8^{4}+ 2^{4}+ 0^{4}+ 8^{4}

9474 = 9^{4}+ 4^{4}+ 7^{4}+ 4^{4}

As 1 = 1^{4}is not a sum it is not included.

The sum of these numbers is 1634 + 8208 + 9474 = 19316.

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

#### Solution

// get the digits of a number into an array let getDigits (n:bigint) = n.ToString().ToCharArray() |> Array.map (fun c -> bigint.Parse(c.ToString())) // get the sum of a number's digits to the specified power let getDigitsToPowerSum (n:bigint) pow = getDigits(n) |> Array.map (fun x -> pown x pow) |> Array.sum // get the max sum achievable by a number of the given number of digits to the specified power let upperBound (digits:int) pow = bigint(digits) * pown 9I pow // find the last number of digits n, where the max sum achievable by the digits of a number of // n digits to the specified power is greater than the smallest number of n digits // any number with more than n digits do not need to be checked let digitsToCheck pow = let n = Seq.unfold (fun state -> Some(state, (state+1))) 1 |> Seq.filter (fun x -> (upperBound x pow).ToString().ToCharArray().Length < x) |> Seq.head n-1 // get the next number with the given number of digits let maxNumber digits = [1..digits] |> List.map (fun x -> 9I * pown 10I (x-1)) |> List.sum let answer = let max = maxNumber (digitsToCheck 5) [2I..max] |> List.filter (fun n -> n = getDigitsToPowerSum n 5) |> List.sum

One of the tricky things with this problem is that there’s no upper limit to how far you’d need to test before you can safely determine that you’ve tested all the numbers whose sum of fifth powers of their digits MIGHT be equal to the numbers themselves.

But that’s not to say it’s not possible, for a 1-digit number, i.e. 1..9, the max sum of its digits is 1 * (9 POW 5) = 59049; similarly for a 2-digit number the max sum is 2 * (9 POW 5) = 118098. The *upperBound* function calculates this upper ceiling for a number of a given digits and power.

Let’s take a closer look at the distribution of this upper limit as the number of digits go up, for the fourth power:

so as you can see, when the number of digits reaches 6, the max sum of fourth powers of digits is 39366, but the smallest 6-digit number is 100000! Therefore it’s impossible for any 6 digit number to be written as the sum of fourth powers of its digits, and it means we’ll need to go as far as covering all 5 digit numbers. The *digitsToCheck* function simply encapsulates this bit of logic:

The *maxNumber* function is a helper function which generates the biggest number of the given number of digits. To find the answer, I simply had to make use of all the helper functions mentioned so far and sum the numbers whose fifth powers of its digits equals itself.

Hi, I’m **Yan**. I’m an **AWS Serverless Hero** and the author of **Production-Ready Serverless**.

I specialise in rapidly transitioning teams to serverless and building production-ready services on AWS.

Are you struggling with serverless or need guidance on best practices? Do you want someone to review your architecture and help you avoid costly mistakes down the line? Whatever the case, I’m here to help.

Check out my new podcast **Real-World Serverless** where I talk with engineers who are building amazing things with serverless technologies and discuss the real-world use cases and challenges they face. If you’re interested in what people are actually doing with serverless and what it’s really like to be working with serverless day-to-day, then this is the podcast for you.

Check out my new course, **Learn you some Lambda best practice for great good!** In this course, you will learn best practices for working with AWS Lambda in terms of performance, cost, security, scalability, resilience and observability. We will also cover latest features from re:Invent 2019 such as Provisioned Concurrency and Lambda Destinations. **Enrol now and start learning**!

Check out my video course, **Complete Guide to AWS Step Functions**. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. There is something for everyone from beginners to more advanced users looking for design patterns and best practices. **Enrol now and start learning**!

Are you working with Serverless and looking for expert training to level-up your skills? Or are you looking for a solid foundation to start from? Look no further, register for my **Production-Ready Serverless workshop** to learn how to build production-grade Serverless applications!

Further reading

Here is a complete list of all my posts on serverless and AWS Lambda. In the meantime, here are a few of my most popular blog posts.

- Lambda optimization tip – enable HTTP keep-alive
- You are wrong about serverless and vendor lock-in
- You are thinking about serverless costs all wrong
- Just how expensive is the full AWS SDK?
- Many faced threats to Serverless security
- We can do better than percentile latencies
- Yubl’s road to Serverless
- AWS Lambda – should you have few monolithic functions or many single-purposed functions?
- AWS Lambda – compare coldstart time with different languages, memory and code sizes
- Guys, we’re doing pagination wrong
- Top 10 Serverless framework best practices