Project Euler – Problem 66 Solution


Consider quadratic Diophantine equations of the form:

x2 – Dy2 = 1

For example, when D=13, the minimal solution in x is 6492 – 13×1802 = 1.

It can be assumed that there are no solutions in positive integers when D is square.

By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following:

32 – 2×22 = 1

22 – 3×12 = 1

92 – 5×42 = 1

52 – 6×22 = 1

82 – 7×32 = 1

Hence, by considering minimal solutions in x for D <= 7, the largest x is obtained when D=5.

Find the value of D <= 1000 in minimal solutions of x for which the largest value of x is obtained.


// define function to get the continued fractions, a0,a1,a2,
let continuedFraction D =
    // define functions for working out the nth term of P, Q and a sequence
    let getPn an' qn' pn' = an' * qn' - pn'
    let getQn D pn qn' = (D - pown pn 2) / qn'
    let getAn a0 pn qn = (a0 + pn) / qn

    // work out the initial terms
    let a0 = bigint(sqrt(double(D)))
    let p1, q1 = a0, D-a0*a0
    let a1 = getAn a0 p1 q1
    let initial = (p1, q1, a1)

    Seq.unfold (fun (pn', qn', an') ->
        let pn = getPn an' qn' pn'
        let qn = getQn D pn qn'
        let an = getAn a0 pn qn
        Some((pn', qn', an'), (pn, qn, an))) initial
    |> (fun (pn, qn, an) -> an)
    |> Seq.append [a0]

// define function to get the continued fraction convergents
// e.g. for D = 7: 2/1, 3/1, 5/2, 8/3, ...
let continuedFractionConvergents D =
    let getN an n' n'' = an * n' + n''

    // work out the initial terms
    let fractions = continuedFraction D
    let a0 = Seq.head fractions
    let p0, p1 = a0, a0 * (Seq.nth 1 fractions) + 1I
    let q0, q1 = 1I, Seq.nth 1 fractions
    let initial = (p1, q1, p0, q0)

    Seq.scan (fun (pn', qn', pn'', qn'') an ->
        let pn = getN an pn' pn''
        let qn = getN an qn' qn''
        (pn, qn, pn', qn')) initial (fractions |> Seq.skip 2)
    |> (fun (pn, qn, pn', qn') -> (pn, qn))
    |> Seq.append [(p0, q0)]

let answer =
    |> List.filter (fun d -> sqrt(double(d)) % 1.0 <> 0.0)
    |> List.maxBy (fun d ->
        continuedFractionConvergents d
        |> Seq.filter (fun (x, y) -> x*x - d*y*y = 1I)
        |> fst
        |> Seq.head)

After spending much time reading the information on Pell’s equation on mathworld and wikipedia, it turns out that the best way to solve the equation for a given D is to work out the continued fraction convergents to the square root of D.

For example, for D = 7, the equation becomes:


The fundamental solution (the first pair of x, y which satisfies the equation) can be obtained by going through the sequence of convergents for the square root of 7:

image image
image image
image image
image image
image image

So how do we workout the values of the convergents? The continued fraction for a number is usually written as


The first ten values generated by the continued fraction for the square root of 2 are:

1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, …

These values are called continued fraction convergents, getting closer to the true value of square root 2 with each step..

So, to find the convergents to the square root of D, we first need to find the values of a:





Once we have the sequence of values for a, we can then find out the convergent values:



The rest is simple, for each value of D between 1 and 1000, go through the convergents to find the fundamental solution and return the max value of x in all the fundamental solutions.

Enjoy what you’re reading? Subscribe to my newsletter and get more content on AWS and serverless technologies delivered straight to your inbox.

Yan Cui

I’m an AWS Serverless Hero and the author of Production-Ready Serverless. I have run production workload at scale in AWS for nearly 10 years and I have been an architect or principal engineer with a variety of industries ranging from banking, e-commerce, sports streaming to mobile gaming. I currently work as an independent consultant focused on AWS and serverless.

You can contact me via Email, Twitter and LinkedIn.

Hire me.

Check out my new course, Complete Guide to AWS Step Functions.

In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. Including basic concepts, HTTP and event triggers, activities, design patterns and best practices.

Get Your Copy