Project Euler – Problem 48 Solution
Problem The series, 11 + 22 + 33 + … + 1010 = 10405071317. Find the last ten digits of the series, 11 + 22 + 33 + … + 10001000. Solution
Problem The series, 11 + 22 + 33 + … + 1010 = 10405071317. Find the last ten digits of the series, 11 + 22 + 33 + … + 10001000. Solution
Problem An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021… It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 x d10 x d100 x d1000 x d10000 x d100000 …
Problem A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666…, and …
Problem The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? Solution The rotate …
Problem The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Find the sum of the only eleven primes that …
Problem The decimal number, 585 = 10010010012 (binary), is palindromic in both bases. Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. (Please note that the palindromic number, in either base, may not include leading zeros.) Solution The isPalindromic function here is an enhanced version …
Problem We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital. The product 7254 is unusual, as the identity, 39 x 186 = 7254, containing multiplicand, multiplier, and product is 1 through …
Problem 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included. Solution …
Problem Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: 1634 = 14 + 64 + 34 + 44 8208 = 84 + 24 + 04 + 84 9474 = 94 + 44 + 74 + 44 As 1 = 14 is not a sum …
Problem Consider all integer combinations of ab for $latex 2 \leq a \leq 5 $ and $latex 2 \leq b \leq 5$: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical order, with any repeats removed, we get the following sequence …
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.