Yan Cui
I help clients go faster for less using serverless technologies.
Problem
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
By expanding this for the first four iterations, we get:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666…
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379…
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
Solution
// define function to return all the numerator-denominator pairs for the first n expand let expand n = Seq.unfold (fun (num, denom) -> Some((num, denom), (denom*2I+num, denom+num))) (3I, 2I) |> Seq.take n let answer = expand 1000 |> Seq.filter (fun (num, denom) -> num.ToString().Length > denom.ToString().Length) |> Seq.length
If you look at the patterns 3/2, 7/5, 17/12, 41/29, and so on, it’s easy to spot a pattern where the numerator and denominator of iteration n can be derived from the iteration n-1:
Numerator(n) = Numerator(n-1) + 2 * Denominator(n-1)
Denominator(n) = Numerator(n-1) + Denominator(n-1)
Whenever you’re ready, here are 3 ways I can help you:
- Production-Ready Serverless: Join 20+ AWS Heroes & Community Builders and 1000+ other students in levelling up your serverless game. This is your one-stop shop for quickly levelling up your serverless skills.
- I help clients launch product ideas, improve their development processes and upskill their teams. If you’d like to work together, then let’s get in touch.
- Join my community on Discord, ask questions, and join the discussion on all things AWS and Serverless.