Project Euler – Problem 87 Solution

You can become a serverless blackbelt. Enrol to my 4-week online workshop Production-Ready Serverless and gain hands-on experience building something from scratch using serverless technologies. At the end of the workshop, you should have a broader view of the challenges you will face as your serverless architecture matures and expands. You should also have a firm grasp on when serverless is a good fit for your system as well as common pitfalls you need to avoid. Sign up now and get 15% discount with the code yanprs15!

Problem

The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way:

28 = 22 + 23 + 24

33 = 32 + 23 + 24

49 = 52 + 23 + 24

47 = 22 + 33 + 24

How many numbers below fifty million can be expressed as the sum of a prime square, prime cube, and prime fourth power?

Solution

// generate all prime numbers under <= this max
let max = int64(sqrt(double(50000000L)))

// initialise the list with 2 which is the only even number in the sequence
let mutable primeNumbers = &#91;2L&#93;

// only check the prime numbers which are <= the square root of the number n
let hasDivisor n =
    primeNumbers
    |> Seq.takeWhile (fun n' -> n' <= int64(sqrt(double(n))))
    |> Seq.exists (fun n' -> n % n' = 0L)

// only check odd numbers <= max
let potentialPrimes = Seq.unfold (fun n -> if n > max then None else Some(n, n+2L)) 3L

// populate the prime numbers list
for n in potentialPrimes do if not(hasDivisor n) then primeNumbers <- primeNumbers @ &#91;n&#93;

// use the same hasDivisor function instead of the prime numbers list as it offers
// far greater coverage as the number n is square rooted so this function can
// provide a valid test up to max*max
let isPrime n = if n = 1L then false else not(hasDivisor(n))

let answer =
    primeNumbers
    |> Seq.collect (fun n ->
        primeNumbers 
        |> Seq.map (fun n' -> pown n 2 + pown n' 3) 
        |> Seq.takeWhile (fun sum -> sum < 50000000L))
    |> Seq.collect (fun sum ->
        primeNumbers 
        |> Seq.map (fun n -> sum + pown n 4) 
        |> Seq.takeWhile (fun sum' -> sum' < 50000000L))
    |> Seq.distinct
    |> Seq.length

The biggest prime that can appear in the equation is equals to the square root of 50000000 – 8 – 16, which, incidentally is just over 7000, so the numbers of primes involved is reasonably small which bodes well for a fast solution!

The logic in this solution is otherwise simple, using the cached prime numbers list to first generate numbers (< 50 million) that can be written as the sum of a prime square and prime cube; then for each number see if we can add a prime fourth power and get a sum less than 50 million.

One thing that caught me out initially was the need to search for distinct numbers as some of these numbers do overlap, but otherwise this is a solution which runs happily under 3 seconds.

Liked this article? Support me on Patreon and get direct help from me via a private Slack channel or 1-2-1 mentoring.
Subscribe to my newsletter


Hi, I’m Yan. I’m an AWS Serverless Hero and I help companies go faster for less by adopting serverless technologies successfully.

Are you struggling with serverless or need guidance on best practices? Do you want someone to review your architecture and help you avoid costly mistakes down the line? Whatever the case, I’m here to help.

Hire me.


Skill up your serverless game with this hands-on workshop.

My 4-week Production-Ready Serverless online workshop is back!

This course takes you through building a production-ready serverless web application from testing, deployment, security, all the way through to observability. The motivation for this course is to give you hands-on experience building something with serverless technologies while giving you a broader view of the challenges you will face as the architecture matures and expands.

We will start at the basics and give you a firm introduction to Lambda and all the relevant concepts and service features (including the latest announcements in 2020). And then gradually ramping up and cover a wide array of topics such as API security, testing strategies, CI/CD, secret management, and operational best practices for monitoring and troubleshooting.

If you enrol now you can also get 15% OFF with the promo code “yanprs15”.

Enrol now and SAVE 15%.


Check out my new podcast Real-World Serverless where I talk with engineers who are building amazing things with serverless technologies and discuss the real-world use cases and challenges they face. If you’re interested in what people are actually doing with serverless and what it’s really like to be working with serverless day-to-day, then this is the podcast for you.


Check out my video course, Complete Guide to AWS Step Functions. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. There is something for everyone from beginners to more advanced users looking for design patterns and best practices. Enrol now and start learning!


Check out my video course, Complete Guide to AWS Step Functions. In this course, we’ll cover everything you need to know to use AWS Step Functions service effectively. There is something for everyone from beginners to more advanced users looking for design patterns and best practices. Enrol now and start learning!