Project Euler – Problem 55 Solution
Problem If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Although no one has …
Project Euler – Problem 53 Solution
Problem There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, 5C3 = 10. In general, It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066. How many, not necessarily distinct, values …
Project Euler – Problem 27 Solution
Problem Euler published the remarkable quadratic formula: n² + n + 41 It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n …
Project Euler – Problem 52 Solution
Problem It can be seen that the number, 125874, and its double, 251748, contain exactly the same digits, but in a different order. Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits. Solution
Project Euler – Problem 43 Solution
Problem The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property. Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we …
Project Euler – Problem 42 Solution
Problem The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, … By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form …
Project Euler – Problem 41 Solution
Problem We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? Solution This is a simple brute force solution which for n = …
Project Euler – Problem 48 Solution
Problem The series, 11 + 22 + 33 + … + 1010 = 10405071317. Find the last ten digits of the series, 11 + 22 + 33 + … + 10001000. Solution
Project Euler – Problem 40 Solution
Problem An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021… It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 x d10 x d100 x d1000 x d10000 x d100000 …