Yan Cui
I help clients go faster for less using serverless technologies.
Problem
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10001st prime number?
Solution
open System let findFactorsOf(n) = let upperBound = int32(Math.Sqrt(double(n))) [2..upperBound] |> Seq.filter (fun x -> n % x = 0) let isPrime(n) = findFactorsOf(n) |> Seq.length = 0 let primeNumbers = Seq.unfold (fun x -> Some(x, x + 1)) 2 |> Seq.filter isPrime let p = primeNumbers |> Seq.nth(10000)
Here I borrowed the findFactors and isPrime functions I first used in the problem 3 solution, except this time they don’t have to be constrained to work int64 types.
The rest of the solution’s pretty straight forward too, to find the 10001st prime number I first need to generate the sequence of all prime numbers. I did so by using Seq.unfold to generate the list of all natural numbers equal or greater than 2 (the first prime number), coupled with the isPrime predicate:
let primeNumbers = Seq.unfold (fun x -> Some(x, x + 1)) 2 |> Seq.filter isPrime
With the sequence of all prime numbers at hand, Seq.nth is used to find the element at the index position 10000 (sequences are zero-indexed like arrays, so this is actually the 10001st element in the sequence) to get our answer!
Whenever you’re ready, here are 4 ways I can help you:
- Production-Ready Serverless: Join 20+ AWS Heroes & Community Builders and 1000+ other students in levelling up your serverless game. This is your one-stop shop for quickly levelling up your serverless skills.
- Do you want to know how to test serverless architectures with a fast dev & test loop? Check out my latest course, Testing Serverless Architectures and learn the smart way to test serverless.
- I help clients launch product ideas, improve their development processes and upskill their teams. If you’d like to work together, then let’s get in touch.
- Join my community on Discord, ask questions, and join the discussion on all things AWS and Serverless.
here’s another solution
let p7 q =
let isPrime n =
let rec check = function
|i when i > n/2I -> true
|i when n % i = 0I -> false
|i -> check (i+1I)
check 2I
let rec loop nth = function
|o when isPrime o -> //printfn “%A %A” o nth
match nth with
|x when x = q -> o
|_ -> loop (nth + 1I) (o + 1I)
|o -> loop nth (o+1I)
loop 1I 2I